Please check the examination deta	ails below	before ente	ring your can	didate information
Candidate surname			Other name	s
Pearson Edexcel International Advanced Level	Centre	Number		Candidate Number
Tuesday 8 Jar	nua	ry 2	019	
Morning (Time: 1 hour 30 minute	es)	Paper Re	eference V	VMA11/01
Mathematics				
Advanced Subsidiary Pure Mathematics P1				
You must have: Mathematical Formulae and Stat	tistical 1	ables (Lil	ac), calcula	tor Total Marks

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 12 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

Answer ALL questions.	Write your answers in the spaces provided.
-----------------------	--

1.	Find

$$\int \left(\frac{2}{3}x^3 - \frac{1}{2x^3} + 5\right) \mathrm{d}x$$

	$\int \left(\frac{2}{3}x^3 - \frac{1}{2x^3} + 5\right) \mathrm{d}x$	
simplifying your answer.		(4)

Question 1 continued	Leave blank
	_
	-
	-
	-
	_
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	-
	-
	Q1
(Total 4 marks)	
(Minii Finoz)	

2.	Given		
		3^x	
		$\frac{3^{x}}{3^{4y}} = 27\sqrt{3}$	
	find y as a simplified function of x .		
			(3)
_			

		Leave
Question 2 continued		
		02
		Q2
	(Total 3 marks)	

(a) Find the gradient of l_1			
The line $l_{\scriptscriptstyle 2}$ is perpendicular to $l_{\scriptscriptstyle 1}$ and	passes through the	point $(6, -2)$.	
(b) Find the equation of l_2 in the form	m y = mx + c, whe	are m and c are constants.	

Question 3 continued	Leave blank
	Q3
(Total 5 marks)	

(3)

4.

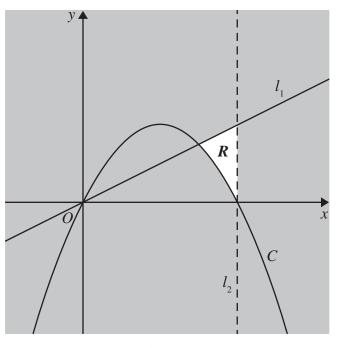


Figure 1

Figure 1 shows a line l_1 with equation 2y = x and a curve C with equation $y = 2x - \frac{1}{8}x^2$

The region R, shown unshaded in Figure 1, is bounded by the line $l_{\scriptscriptstyle 1}$, the curve C and a line $l_{\scriptscriptstyle 2}$

Given that l_2 is parallel to the y-axis and passes through the intercept of C with the positive x-axis, identify the inequalities that define R.

	Leave blank
Question 4 continued	
	Q4
(Total 3 marks)	
(Total 5 marks)	

5.

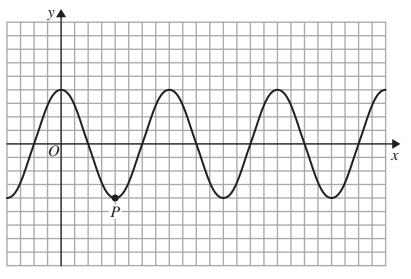


Figure 2

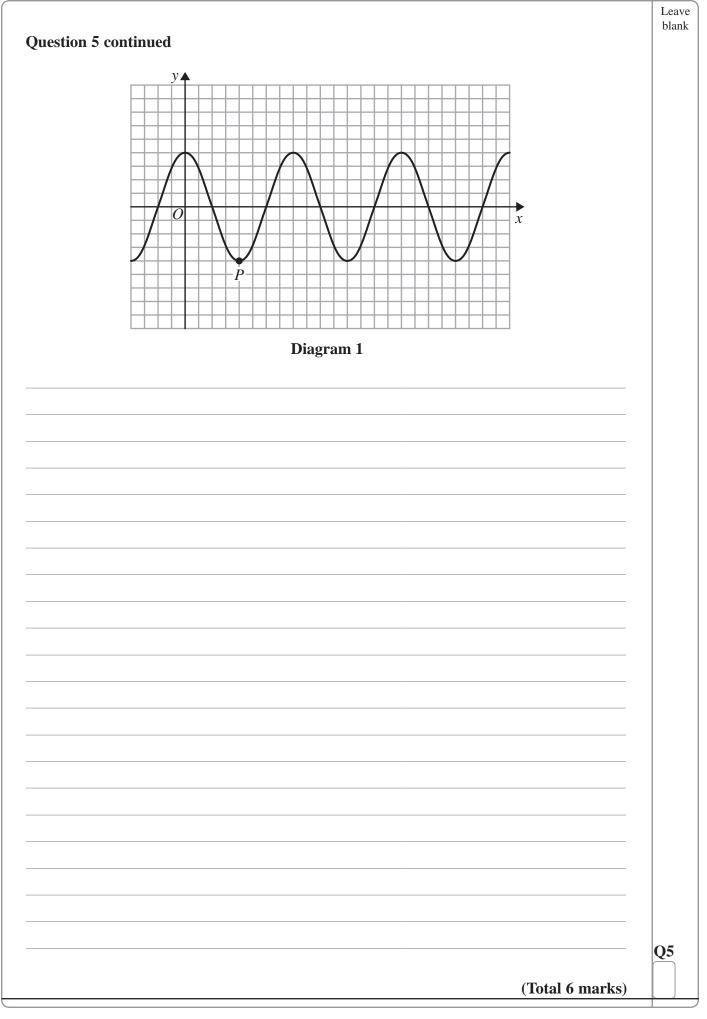
Figure 2 shows a plot of part of the curve with equation $y = \cos 2x$ with x being measured in radians.

The point P, shown on Figure 2, is a minimum point on the curve.

(a) State the coordinates of P.

(2)

A copy of Figure 2, called Diagram 1, is shown at the top of the next page.

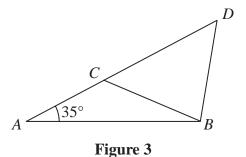

(b) Sketch, on Diagram 1, the curve with equation $y = \sin x$

(2)

- (c) Hence, or otherwise, deduce the number of solutions of the equation
 - (i) $\cos 2x = \sin x$ that lie in the region $0 \le x \le 20\pi$

(ii) $\cos 2x = \sin x$ that lie in the region $0 \le x \le 21\pi$

(2)


6.	(Solutions based entirely on graphical or numerical methods are not acceptable.)	
	Given	
	$f(x) = 2x^{\frac{5}{2}} - 40x + 8 \qquad x > 0$	
	(a) solve the equation $f'(x) = 0$	(4)
		(4)
	(b) solve the equation $f''(x) = 5$	(3)

Question 6 continued	Leave blank
	Q6
(Total 7 marks)	

7.

Not to scale

The structure consists of four wooden beams, AB, BD, BC and AD.

Figure 3 shows the design for a structure used to support a roof.

Given $AB = 6.5 \,\text{m}$, $BC = BD = 4.7 \,\text{m}$ and angle $BAC = 35^{\circ}$

(a) find, to one decimal place, the size of angle ACB,

(3)

(b) find, to the nearest metre, the total length of wood required to make this structure.

(3)

ì	ø	ġ	ø	μ
3	7	Ė	q	ń
1	Ŀ	İ	Ŀ	ı
Ĵ	ä	_	ä	ā
1	c	3	C	_
			Ξ	2
Ì		S		
		7	7	٩
ì	r	à	s	ń
1	Ŀ	ø		1)
ì		Ė		ė
ì	ŧ	ė	ı	ú
ì	_		L	÷
	ī	Ŧ	ī	7
ł	þ		Ė	
÷	۰			
3	ė	ą	ġ	P
1	ğ		ï	
ŝ	÷		í	=
ł	Ľ	I	•	ı
	ī			
ł	P	7		4
	ĺ		ė	
1	À	b	å	ø
4	Ŀ	d	Ŀ	
į	b	ė	ė	
1	Ę		5	3
j	ø	ø	P	7
Ĺ	ċ			
1	þ	ė		ą
	'n	•	ć	
J	ľ		ī	3
	9		9	_
7	3			p
j	8	ļ		ė
	4	_	į	
Ì	٢	-	7	ď
٦	b	ė	ø	ø
1	ø	Ė	۹	ĸ
1	L	•		а

Question 7 continued	Leave blank
	Q 7
(Total 6 marks)	
(Loui V marks)	

8.

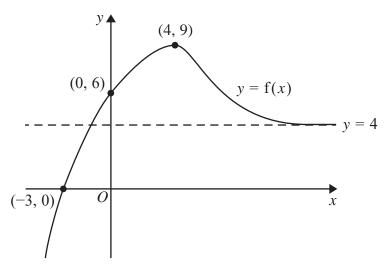


Figure 4

The curve C with equation y = f(x) is shown in Figure 4.

The curve *C*

- has a single turning point, a maximum at (4, 9)
- crosses the coordinate axes at only two places, (-3, 0) and (0, 6)
- has a single asymptote with equation y = 4

as shown in Figure 4.

(a) State the equation of the asymptote to the curve with equation y = f(-x).

(1)

(b) State the coordinates of the turning point on the curve with equation $y = f\left(\frac{1}{4}x\right)$.

(1)

Given that the line with equation y = k, where k is a constant, intersects C at exactly one point,

(c) state the possible values for k.

(2)

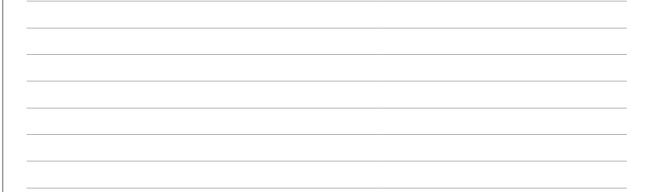
The curve *C* is transformed to a new curve that passes through the origin.

- (d) (i) Given that the new curve has equation y = f(x) a, state the value of the constant a.
 - (ii) Write down an equation for another single transformation of C that also passes through the origin.

(2)

Question 8 continued	Leave blank
	00
	Q8
(Total 6 marks)	




(7)

9.	The	equation
----	-----	----------

$$\frac{3}{x} + 5 = -2x + c$$

where c is a constant, has no real roots.

Question 9 continued	blank
	Q9
(Total 7 marks)	

Given that the area of the sector is 6 cm ² and that the perimeter of	of the sector is 10 cm.
(a) show that	
$3\theta^2 - 13\theta + 12 = 0$	
$3\theta^2 - 13\theta + 12 = 0$	
(h) Hanga find possible values of r and A	
(b) Hence find possible values of r and θ .	

Question 10 continued	Leave blank
	_
	_
	_
	_
	_
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_
	_
	_
	Q10
(Total 7 marks	

11. (a) On Diagram 1 sketch the graphs of

(i)
$$y = x(3 - x)$$

(ii)
$$y = x(x - 2)(5 - x)$$

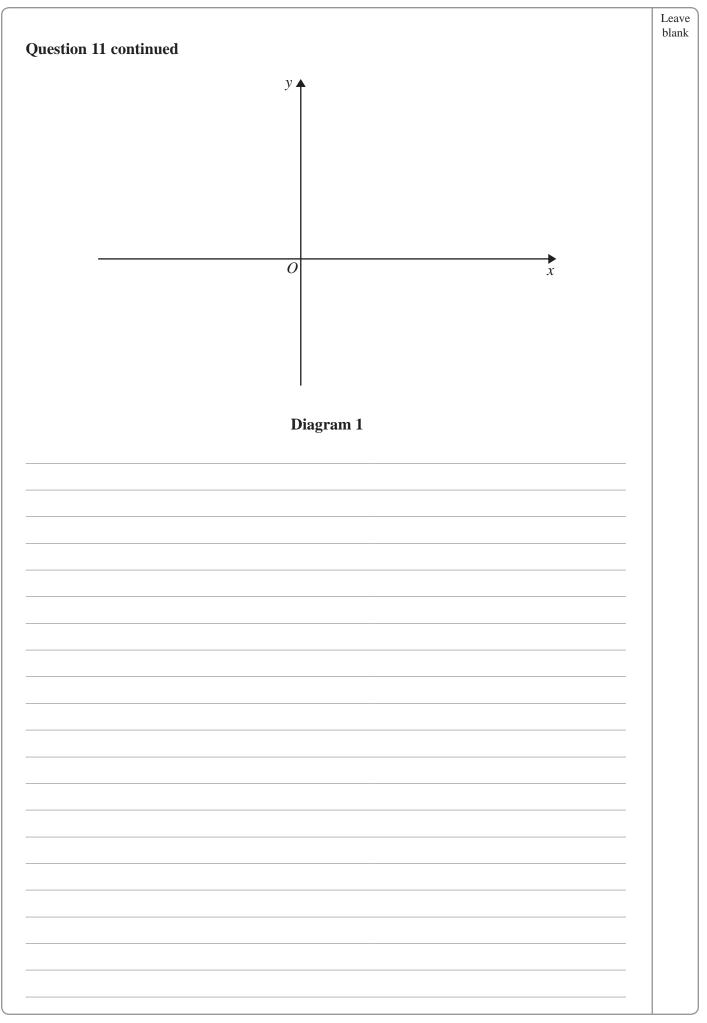
showing clearly the coordinates of the points where the curves cross the coordinate axes.

(4)

(b) Show that the x coordinates of the points of intersection of

$$y = x(3 - x)$$
 and $y = x(x - 2)(5 - x)$

are given by the solutions to the equation $x(x^2 - 8x + 13) = 0$


(3)

The point *P* lies on both curves. Given that *P* lies in the first quadrant,

(c) find, using algebra and showing your working, the exact coordinates of P.

(5)

estion 11 continued	

Question 11 continued	Leave blank
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	_ Q11
(Total 12 marks	s)

12. The curve with equation y = f(x), x > 0, passes through the point P(4, -2).

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x\sqrt{x} - 10x^{-\frac{1}{2}}$$

(a) find the equation of the tangent to the curve at *P*, writing your answer in the form y = mx + c, where m and c are integers to be found.

(4)

|--|

(5)

	blank
Question 12 continued	blank
Question 12 continued	

Leave

nestion 12 continued	blank
	Q12
(Total 9 n	narks)
TOTAL FOR PAPER IS 75 M	ARKS